
Методика точного измерения КСВ

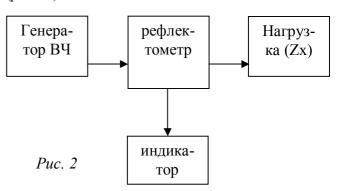
Puc. 1

В радиолюбительской литературе последних лет подробно рассмотрены вопросы практической реализации мостовых ВЧ рефлектометров и их применения для наблюдения частотной характеристики КСВ антенн (или других нагрузок - Zx) с помощью приборов для исследования АЧХ (X1-7, X1-50, X1-48 и им подобных). В данной статье рассмотрена методика точного измерения КСВ в «домашних» условиях.

На *puc.1* приведена, ставшая классической, схема мостового ВЧ рефлектометра.

Номиналы образующих мост резисторов не должны отличаться от измеряемого волнового сопротивления более чем на 1%. Ёмкость конденсаторов С1 и С4 определяет нижнюю рабочую частоту, равную 10МГц при указанных на схеме номиналах. Для снижения нижней рабочей частоты до 1МГц их ёмкость необходимо увеличить до 470 - 680пФ, при этом верхняя рабочая частота понизится до 500 - 800МГц. Тип применяемого диода определяет чувствительность моста. Для большинства практических измерений в полосе частот 1 - 1000МГц пригодны диоды

ГД508А, а для измерения КСВ не лучше 1,2 или при наличии генератора с выходной мощностью 50-100мВт можно использовать КД503А.


Использование арсенид-галлиевых диодов необходимо для работы в полосе $1-2000 {\rm M}\Gamma$ ц и выше при измерении КСВ от 1,05 с выходной мощностью генератора $10-20 {\rm MBT}$.

Выходной сигнал такого рефлектометра пропорционален модулю коэффициента отражения |K|, связанному с КСВ известным соотношением: $KCB = \frac{|K|+1}{|K|-1}$.

При необходимости измерения КСВ необходимо лишь точно определить |K|, для чего следует откалибровать измерительную схему ($puc.\ 2$).

Задача упрощается при использовании ВЧ генератора с калиброванным выходным аттенюатором (ATT), имеющим шаг 1 дБ или менее.

В этом случае для калибровки на частоте измерений при отключенной нагрузке (Zx) и затухании АТТ 2 - 4дБ (для выравнивания неравномерности частотной характеристики) устанавливают его максимальные показания регулировкой

чувствительности индикатора. Затем подключают Zx и отмечают новые показания индикатора. Далее — снова отключают Zx и, не изменяя чувствительности индикатора, увеличивают затухание ATT до установки на индикаторе отмеченных ранее показаний. Получившаяся разница затуханий ATT численно равна |K| в дБ. После этого для перевода полученных значений |K| в KCB можно произвести расчёт по приведённой ранее формуле или воспользоваться данными maблицы 1.

Таблица 1.

К, дБ	КСВ	К, дБ	КСВ	К, дБ	КСВ
1	17,3910	11	1,7849	21	1,1957
2	8,7242	12	1,6709	22	1,1726
3	5,8480	13	1,5769	23	1,1524
4	4,4194	14	1,4985	24	1,1347
5	3,5698	15	1,4326	25	1,1192
6	3,0095	16	1,3767	26	1,1055
7	2,6146	17	1,3290	27	1,0935
8	2,3229	18	1,2880	28	1,0829
9	2,0999	19	1,2528	29	1,0736
10	1,9250	20	1,2222	30	1,0653

Точность выполненного измерения зависит только от нестабильности выходного напряжения генератора и погрешности аттенюатора.

В качестве генератора ВЧ, кроме прибора для исследования АЧХ, можно использовать любой генератор ВЧ, например Г4-107 или любой другой с калиброванным аттенюатором на выходе.

Выхол рефлектометра онжом подключать только не К индикаторному блоку прибора для исследования АЧХ, но и к любому вольтметру постоянного тока соответствующей чувствительностью (100 - 2000 MB)при мощности генератора 10 - 100 мВт).

В зарубежной практике профессиональных радиоизмерений используют такой параметр, как обратные потери (return loss - RL), который эквивалентен коэффициенту отражения. Эти данные, как правило, и приводятся в технической литературе. Пользуясь данными $m a \delta n u u u l$ несложно осуществить перевод RL в KCB (SWR) и наоборот.

Pодыгин E.A. (<u>ru4pg@mail.ru</u>) г. Казань